Some new results on walk regular graphs which are cospectral to its complement
نویسندگان
چکیده
منابع مشابه
Graphs Cospectral with a Friendship Graph or Its Complement
Let n be any positive integer and Fn be the friendship (or Dutch windmill) graph with 2n+1 vertices and 3n edges. Here we study graphs with the same adjacency spectrum as Fn. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let G be a graph cospectral with Fn. Here we prove that if G has no cycle of length 4 or 5, then G ∼= Fn. Moreover if G...
متن کاملgraphs cospectral with a friendship graph or its complement
let $n$ be any positive integer and let $f_n$ be the friendship (or dutch windmill) graph with $2n+1$ vertices and $3n$ edges. here we study graphs with the same adjacency spectrum as the $f_n$. two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. let $g$ be a graph cospectral with $f_n$. here we prove that if $g$ has no cycle of length $4$ or $...
متن کاملSome results on the complement of a new graph associated to a commutative ring
The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...
متن کاملOn k-Walk-Regular Graphs
Considering a connected graph G with diameter D, we say that it is k-walk-regular, for a given integer k (0 ≤ k ≤ D), if the number of walks of length l between vertices u and v only depends on the distance between them, provided that this distance does not exceed k. Thus, for k = 0, this definition coincides with that of walk-regular graph, where the number of cycles of length l rooted at a gi...
متن کاملCospectral Graphs and Regular Orthogonal Matrices of Level 2
For a graph Γ with adjacency matrix A, we consider a switching operation that takes Γ into a graph Γ′ with adjacency matrix A′, defined by A′ = Q > AQ, where Q is a regular orthogonal matrix of level 2 (that is, Q > Q = I, Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an operation exists, and Γ is nonisomorphic with Γ′, then we say that Γ′ is semi-isomorphic with Γ. Semiis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2009.09.011